Compressive Properties of Open-Cell Al Hybrid Foams at Different Temperatures
نویسندگان
چکیده
Hybrid Ni/Al foams were fabricated by depositing electroless Ni-P (EN) coatings on open-cell Al foam substrate to obtain enhanced mechanical properties. The microstructure, chemical components and phases of the hybrid foams were observed and analyzed by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The mechanical properties of the foams were studied by compressive tests at different temperatures. The experiment results show that the coating is mainly composed of Ni and P elements. There was neither defect at the interface nor crack in the coatings, indicating that the EN coatings had fine adhesion to the Al substrate. The compressive strengths and energy absorption capacities of the as-received foam and hybrid foams decrease with the increasing testing temperatures, but the hybrid foams exhibit a lower decrement rate than the as-received foam. This might be attributed to the different failure mechanisms at different testing temperatures, which is conformed by fractography observation.
منابع مشابه
تاثیر درصد Al2O3 بر خواص مکانیکی فوم کامپوزیتی Al-(0-40%)Al2O3 تولید شده بهروش آلیاژسازی مکانیکی کم انرژی
In this study, at first Al-Al2O3 composite powders having different volume fractions of Al2O3 (0, 10, 20, 30 and 40 vol.%) were produced by low energy mechanical alloying, which were used as foam materials. Then, composite foams with 50, 60, and 70 percent of porosity were produced by space-holder technique. Spherical carbamide particles (1-1.4 mm) were used to achieve spherical porosities. In ...
متن کاملEnhanced Compressive Property of Al Composite Foams at Elevated Temperatures via Plasma Electrolytic Oxidation
The present work investigates the compressive property of Al matrix composite foams at different temperatures between room temperature and 200 ◦C. Elevated temperature results in a decreased compressive strength and energy absorption capacity of as-received Al foams. Therefore, to maintain the compressive property, the Al2O3 ceramic coating was deposited on the Al struts of the foams by the pla...
متن کاملEffect of Fe additive on plastic deformation for crush-boxes with closed-cell metal foams, Part I: Al-composite foam compression response
AbstractIn this paper, we investigate effect of Fe–intermetallic compounds on plastic deformation of closed-cell composite Aluminum Foam as filler of thin-walled tubes. However, deformation of the Aluminum foam-filled thin-walled tubes as crushed-box will be presented in Part (II). Composite foams of AlSi7SiC3 and AlSi7SiC3-(Fe) as closed cell were synthesized by powder metallurgy foaming metho...
متن کاملInfluence of Different Foaming Conditions on the Mechanical, Physical, and Structural Properties of Polypropylene Foam
In this article, the effects of different foam production times and temperatures on the mechanical, physical, and structural properties of polypropylene (PP) foam has been investigated. The microcellular PP foams were carried out using supercritical carbon dioxide (sc-CO2) as a physical foaming agent in a batch process. The samples were placed in a pressure vessel and were saturated ...
متن کاملAcoustic damping performance of aluminum nanocomposite foams with different additive of carbon nanotubes and comparison that with conventional rockwool (Research Article)
Open cell aluminum foams have good acoustic dampening properties. In this research, in order to improve the sound damping capacity of these foams, 0.9, 1.5 and 3wt% carbon nanotubes were added to the aluminum foam. Foams were produced by the space holder method in powder metallurgy. The results showed that Al-0.9wt%CNT nanocomposite foam had the highest average sound transmission loss in the fr...
متن کامل